193 lines
5.1 KiB
Markdown
193 lines
5.1 KiB
Markdown
+++
|
|
title = "Using `serde_json` or `serde` data, in `datafusion`"
|
|
date = 2025-06-05
|
|
|
|
[taxonomies]
|
|
tags = ["datafusion", "serde", "serde_json","dataframe"]
|
|
+++
|
|
|
|
Getting data into [`datafusion`](https://github.com/apache/datafusion) is not well documented, especially using `serde_json` or `serde` data.
|
|
|
|
This example shows how to convert a `serde_json::Value::Array` into a `datafusion` `DataFrame`, manipulate the `dataframe` in `datafusion`, then convert it back to `serde_json`.
|
|
|
|
```toml
|
|
# Cargo.toml
|
|
datafusion = "47.0.0"
|
|
serde_arrow = { version = "0.13.3", features = ["arrow-55"] }
|
|
```
|
|
|
|
```rust
|
|
// `serde_json::Value`
|
|
let json = serde_json::json!([{
|
|
"date": "2025-06-05",
|
|
"test": "test",
|
|
"price": 1.01,
|
|
}]);
|
|
|
|
let ctx = SessionContext::new();
|
|
|
|
let serde_json::Value::Array(json_array) = &json else {
|
|
return Err(anyhow::anyhow!("Expected JSON array, got different type"));
|
|
};
|
|
|
|
if json_array.is_empty() {
|
|
return Ok(Vec::new());
|
|
}
|
|
|
|
// Configure `TracingOptions` to allow null fields and coerce numbers
|
|
let tracing_options = TracingOptions::default()
|
|
.allow_null_fields(true)
|
|
.coerce_numbers(true);
|
|
|
|
// Get the schema from actual data, using samples, with `TracingOptions`
|
|
let fields = Vec::<FieldRef>::from_samples(json_array, tracing_options)?;
|
|
|
|
// Convert `serde_json::Value::Array` to `RecordBatch` using `serde_arrow`
|
|
let record_batch = serde_arrow::to_record_batch(&fields, &json_array)?;
|
|
|
|
// Create a DataFrame from the `RecordBatch`
|
|
let mut df = ctx.read_batch(record_batch)?;
|
|
|
|
// Add a new column `new_col` using DataFrame API
|
|
df = df.with_column("new_col", lit("test".to_string()))?;
|
|
|
|
// Execute the DataFrame query
|
|
let result_batches = df.collect().await?;
|
|
|
|
// Convert back to `serde_json` using `serde_arrow`
|
|
let all_json_values = result_batches
|
|
.into_iter()
|
|
.flat_map(|batch| {
|
|
serde_arrow::from_record_batch(&batch).unwrap_or_else(|_| Vec::new())
|
|
})
|
|
.collect::<Vec<serde_json::Value>>();
|
|
|
|
#[derive(Default, Debug, Clone, Deserialize, Serialize)]
|
|
pub struct TestData {
|
|
date: String,
|
|
test: String,
|
|
price: f64,
|
|
new_col: String,
|
|
}
|
|
|
|
// Convert the `serde_json::Value` to Vec<TestData>
|
|
let test_data: Vec<TestData> =
|
|
serde_json::from_value(serde_json::Value::Array(all_json_values))?;
|
|
|
|
assert_eq!(
|
|
test_data,
|
|
Vec![
|
|
TestData {
|
|
date: "2025-06-05".to_string(),
|
|
test: "test".to_string(),
|
|
price: 1.01,
|
|
new_col: "test".to_string(),
|
|
},
|
|
]
|
|
);
|
|
```
|
|
|
|
# Or you use can use this `datafusion_ext`
|
|
```rust
|
|
// src/utils/datafusion_ext.rs
|
|
use anyhow::Error;
|
|
use datafusion::{arrow::datatypes::FieldRef, dataframe::DataFrame, prelude::*};
|
|
use serde_arrow::schema::{SchemaLike, TracingOptions};
|
|
|
|
pub trait JsonValueExt {
|
|
/// Converts a `serde_json::Value::Array` into a `datafusion::dataframe`
|
|
fn to_df(&self) -> Result<DataFrame, Error>;
|
|
}
|
|
|
|
impl JsonValueExt for serde_json::Value {
|
|
fn to_df(&self) -> Result<DataFrame, Error> {
|
|
let ctx = SessionContext::new();
|
|
|
|
let Self::Array(json_array) = self else {
|
|
return Err(anyhow::anyhow!(
|
|
"Expected `serde_json::Value::Array`, got different type"
|
|
));
|
|
};
|
|
|
|
if json_array.is_empty() {
|
|
return Err(anyhow::anyhow!("Empty `serde_json::Value::Array` provided"));
|
|
}
|
|
|
|
let tracing_options = TracingOptions::default()
|
|
.allow_null_fields(true)
|
|
.coerce_numbers(true);
|
|
|
|
let fields = Vec::<FieldRef>::from_samples(json_array, tracing_options)?;
|
|
let record_batch = serde_arrow::to_record_batch(&fields, &json_array)?;
|
|
|
|
let df = ctx.read_batch(record_batch)?;
|
|
|
|
Ok(df)
|
|
}
|
|
}
|
|
|
|
#[async_trait::async_trait]
|
|
pub trait DataFrameExt {
|
|
/// Collects a `datafusion::dataframe` and deserializes it to a Vec of the
|
|
/// specified type
|
|
async fn to_vec<T>(&self) -> Result<Vec<T>, Error>
|
|
where
|
|
T: serde::de::DeserializeOwned;
|
|
}
|
|
|
|
#[async_trait::async_trait]
|
|
impl DataFrameExt for DataFrame {
|
|
async fn to_vec<T>(&self) -> Result<Vec<T>, Error>
|
|
where
|
|
T: serde::de::DeserializeOwned,
|
|
{
|
|
let result_batches = self.clone().collect().await?;
|
|
|
|
let all_json_values = result_batches
|
|
.into_iter()
|
|
.flat_map(|batch| serde_arrow::from_record_batch(&batch).unwrap_or_else(|_| Vec::new()))
|
|
.collect::<Vec<serde_json::Value>>();
|
|
|
|
let typed_result: Vec<T> =
|
|
serde_json::from_value(serde_json::Value::Array(all_json_values))?;
|
|
|
|
Ok(typed_result)
|
|
}
|
|
}
|
|
```
|
|
|
|
```rust
|
|
use utils::datafusion_ext::{DataFrameExt, JsonValueExt};
|
|
|
|
let json = serde_json::json!([{
|
|
"date": "2025-06-05",
|
|
"test": "test",
|
|
"price": 1.01,
|
|
}]);
|
|
|
|
let mut df = json.to_df()?;
|
|
|
|
df = df.with_column("new_col", lit("test".to_string()))?;
|
|
|
|
#[derive(Default, Debug, Clone, Deserialize, Serialize)]
|
|
pub struct TestData {
|
|
date: String,
|
|
test: String,
|
|
price: f64,
|
|
new_col: String,
|
|
}
|
|
|
|
let etfs = df.to_vec::<TestData>().await?;
|
|
|
|
assert_eq!(
|
|
test_data,
|
|
Vec![
|
|
TestData {
|
|
date: "2025-06-05".to_string(),
|
|
test: "test".to_string(),
|
|
price: 1.01,
|
|
new_col: "test".to_string(),
|
|
},
|
|
]
|
|
);
|
|
```
|