mirror of
https://github.com/NexVeridian/ark-invest-api-rust-data.git
synced 2025-09-02 01:49:12 +00:00
778 lines
26 KiB
Rust
778 lines
26 KiB
Rust
use anyhow::{anyhow, Error, Result};
|
|
use chrono::{Duration, NaiveDate};
|
|
use glob::glob;
|
|
use polars::datatypes::DataType;
|
|
use polars::lazy::dsl::StrptimeOptions;
|
|
use polars::prelude::*;
|
|
use reqwest::blocking::Client;
|
|
use serde_json::Value;
|
|
use std::fs::{create_dir_all, File};
|
|
use std::io::Cursor;
|
|
use std::path::Path;
|
|
use strum_macros::{EnumIter, EnumString};
|
|
|
|
#[derive(Debug, Default, strum_macros::Display, EnumIter, Clone, Copy, PartialEq)]
|
|
pub enum Ticker {
|
|
ARKVX,
|
|
ARKF,
|
|
ARKG,
|
|
#[default]
|
|
ARKK,
|
|
ARKQ,
|
|
ARKW,
|
|
ARKX,
|
|
ARKA,
|
|
ARKZ,
|
|
ARKC,
|
|
ARKD,
|
|
ARKY,
|
|
}
|
|
impl Ticker {
|
|
pub fn value(&self) -> &str {
|
|
match *self {
|
|
Ticker::ARKVX => "ARKVX",
|
|
Ticker::ARKF => "FINTECH_INNOVATION",
|
|
Ticker::ARKG => "GENOMIC_REVOLUTION",
|
|
Ticker::ARKK => "INNOVATION",
|
|
Ticker::ARKQ => "AUTONOMOUS_TECH._&_ROBOTICS",
|
|
Ticker::ARKW => "NEXT_GENERATION_INTERNET",
|
|
Ticker::ARKX => "SPACE_EXPLORATION_&_INNOVATION",
|
|
Ticker::ARKA => "ARKA",
|
|
Ticker::ARKZ => "ARKZ",
|
|
Ticker::ARKC => "ARKC",
|
|
Ticker::ARKD => "ARKD",
|
|
Ticker::ARKY => "ARKY",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub enum DF {
|
|
LazyFrame(LazyFrame),
|
|
DataFrame(DataFrame),
|
|
}
|
|
impl From<LazyFrame> for DF {
|
|
fn from(lf: LazyFrame) -> Self {
|
|
DF::LazyFrame(lf)
|
|
}
|
|
}
|
|
impl From<DataFrame> for DF {
|
|
fn from(df: DataFrame) -> Self {
|
|
DF::DataFrame(df)
|
|
}
|
|
}
|
|
impl DF {
|
|
pub fn collect(self) -> Result<DataFrame, Error> {
|
|
match self {
|
|
DF::LazyFrame(x) => Ok(x.collect()?),
|
|
DF::DataFrame(x) => Ok(x),
|
|
}
|
|
}
|
|
pub fn lazy(self) -> LazyFrame {
|
|
match self {
|
|
DF::LazyFrame(x) => x,
|
|
DF::DataFrame(x) => x.lazy(),
|
|
}
|
|
}
|
|
}
|
|
trait DFS {
|
|
fn lazy(self) -> Vec<LazyFrame>;
|
|
fn collect(self) -> Vec<DataFrame>;
|
|
}
|
|
impl DFS for Vec<DF> {
|
|
fn lazy(self) -> Vec<LazyFrame> {
|
|
self.into_iter().map(|df| df.lazy()).collect()
|
|
}
|
|
fn collect(self) -> Vec<DataFrame> {
|
|
self.into_iter().map(|df| df.collect().unwrap()).collect()
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Default, EnumString, Clone, Copy, PartialEq)]
|
|
pub enum Source {
|
|
// Reads Parquet file if exists
|
|
Read,
|
|
// From ARK Invest
|
|
Ark,
|
|
// From api.NexVeridian.com
|
|
#[default]
|
|
ApiIncremental,
|
|
// From api.NexVeridian.com, not usually nessisary, use ApiIncremental
|
|
ApiFull,
|
|
// From arkfunds.io/api, avoid using, use ApiIncremental instead
|
|
ArkFundsIoIncremental,
|
|
// From arkfunds.io/api, avoid using, use ApiFull instead
|
|
ArkFundsIoFull,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct Ark {
|
|
pub df: DF,
|
|
ticker: Ticker,
|
|
path: Option<String>,
|
|
}
|
|
impl Ark {
|
|
pub fn new(source: Source, ticker: Ticker, path: Option<String>) -> Result<Self, Error> {
|
|
let existing_file = Self::read_parquet(&ticker, path.as_ref()).is_ok();
|
|
|
|
let mut ark = Self {
|
|
df: match existing_file {
|
|
true => Self::read_parquet(&ticker, path.as_ref())?,
|
|
false => DF::DataFrame(df!["date" => [""],]?),
|
|
},
|
|
ticker,
|
|
path,
|
|
};
|
|
|
|
let update = match (source, existing_file) {
|
|
(Source::Read, false) => {
|
|
panic!("Can not read from file. file is empty, does not exist, or is locked")
|
|
}
|
|
(Source::Read, true) => None,
|
|
(Source::Ark, _) => Some(ark.get_csv_ark()?),
|
|
(Source::ApiIncremental, true) | (Source::ArkFundsIoIncremental, true) => {
|
|
let last_day = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap()
|
|
+ Duration::days(ark.df.clone().collect()?.column("date")?.max().unwrap());
|
|
Some(ark.get_api(Some(last_day), Some(&source))?)
|
|
}
|
|
_ => Some(ark.get_api(None, Some(&source))?),
|
|
};
|
|
|
|
if let Some(update) = update {
|
|
if existing_file {
|
|
ark.df = Self::concat_df(vec![
|
|
Self::df_format(ark.df)?,
|
|
Self::df_format(update.into())?,
|
|
])?;
|
|
} else {
|
|
ark.df = Self::df_format(update.into())?;
|
|
}
|
|
}
|
|
|
|
Ok(ark)
|
|
}
|
|
|
|
pub fn collect(self) -> Result<DataFrame, Error> {
|
|
self.df.collect()
|
|
}
|
|
|
|
pub fn write_parquet(self) -> Result<Self, Error> {
|
|
// with format df
|
|
let ark = self.format()?;
|
|
Self::write_df_parquet(
|
|
match &ark.path {
|
|
Some(path) => format!("{}/{}.parquet", path, ark.ticker),
|
|
None => format!("data/parquet/{}.parquet", ark.ticker),
|
|
},
|
|
ark.df.clone(),
|
|
)?;
|
|
Ok(ark)
|
|
}
|
|
|
|
fn write_df_parquet(path: String, df: DF) -> Result<(), Error> {
|
|
if let Some(parent) = Path::new(&path).parent() {
|
|
if !parent.exists() {
|
|
create_dir_all(parent)?;
|
|
}
|
|
}
|
|
ParquetWriter::new(File::create(&path)?).finish(&mut df.collect()?)?;
|
|
Ok(())
|
|
}
|
|
|
|
fn read_parquet(ticker: &Ticker, path: Option<&String>) -> Result<DF, Error> {
|
|
let df = LazyFrame::scan_parquet(
|
|
match path {
|
|
Some(p) => format!("{}/{}.parquet", p, ticker),
|
|
None => format!("data/parquet/{}.parquet", ticker),
|
|
},
|
|
ScanArgsParquet::default(),
|
|
)?;
|
|
Ok(df.into())
|
|
}
|
|
|
|
pub fn sort(mut self) -> Result<Self, Error> {
|
|
self.df = Self::df_sort(self.df)?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn df_sort(df: DF) -> Result<DF, Error> {
|
|
Ok(df
|
|
.collect()?
|
|
.sort(["date", "weight"], vec![false, true], false)?
|
|
.into())
|
|
}
|
|
|
|
fn concat_df(dfs: Vec<DF>) -> Result<DF, Error> {
|
|
// with dedupe
|
|
let df = concat(
|
|
dfs.lazy(),
|
|
UnionArgs {
|
|
..Default::default()
|
|
},
|
|
)?;
|
|
Self::dedupe(df.into())
|
|
}
|
|
|
|
pub fn dedupe(mut df: DF) -> Result<DF, Error> {
|
|
df = df
|
|
.lazy()
|
|
.unique_stable(None, UniqueKeepStrategy::First)
|
|
.into();
|
|
Ok(df)
|
|
}
|
|
|
|
pub fn format(mut self) -> Result<Self, Error> {
|
|
self.df = Self::df_format(self.df)?;
|
|
Ok(self)
|
|
}
|
|
|
|
fn df_format_21shares(df: DF) -> Result<DF, Error> {
|
|
let mut df = df.collect()?;
|
|
|
|
if df.get_column_names().contains(&"Weightings") {
|
|
df = df
|
|
.lazy()
|
|
.rename(
|
|
vec![
|
|
"Date",
|
|
"StockTicker",
|
|
"CUSIP",
|
|
"SecurityName",
|
|
"Shares",
|
|
"Price",
|
|
"MarketValue",
|
|
"Weightings",
|
|
],
|
|
vec![
|
|
"date",
|
|
"ticker",
|
|
"cusip",
|
|
"company",
|
|
"shares",
|
|
"share_price",
|
|
"market_value",
|
|
"weight",
|
|
],
|
|
)
|
|
.collect()?;
|
|
|
|
_ = df.drop_in_place("Account");
|
|
_ = df.drop_in_place("NetAssets");
|
|
_ = df.drop_in_place("SharesOutstanding");
|
|
_ = df.drop_in_place("CreationUnits");
|
|
_ = df.drop_in_place("MoneyMarketFlag");
|
|
}
|
|
|
|
Ok(df.into())
|
|
}
|
|
|
|
fn df_format_arkvx(df: DF) -> Result<DF, Error> {
|
|
let mut df = df.collect()?;
|
|
|
|
if df.get_column_names().contains(&"CUSIP") {
|
|
df = df
|
|
.lazy()
|
|
.rename(vec!["CUSIP", "weight (%)"], vec!["cusip", "weight"])
|
|
.collect()?;
|
|
}
|
|
|
|
if !df.get_column_names().contains(&"market_value") {
|
|
df = df
|
|
.lazy()
|
|
.with_columns([
|
|
Series::new("market_value", [None::<i64>]).lit(),
|
|
Series::new("shares", [None::<i64>]).lit(),
|
|
Series::new("share_price", [None::<i64>]).lit(),
|
|
])
|
|
.collect()?;
|
|
}
|
|
|
|
Ok(df.into())
|
|
}
|
|
|
|
pub fn df_format(df: DF) -> Result<DF, Error> {
|
|
let mut df = Self::df_format_21shares(df)?.collect()?;
|
|
df = Self::df_format_arkvx(df.into())?.collect()?;
|
|
|
|
if df.get_column_names().contains(&"market_value_($)") {
|
|
df = df
|
|
.lazy()
|
|
.rename(
|
|
vec!["market_value_($)", "weight_(%)"],
|
|
vec!["market_value", "weight"],
|
|
)
|
|
.collect()?;
|
|
}
|
|
if df.get_column_names().contains(&"market value ($)") {
|
|
df = df
|
|
.lazy()
|
|
.rename(
|
|
vec!["market value ($)", "weight (%)"],
|
|
vec!["market_value", "weight"],
|
|
)
|
|
.collect()?;
|
|
}
|
|
|
|
// if df.rename("market_value_($)", "market_value").is_ok() {}
|
|
// if df.rename("market value ($)", "market_value").is_ok() {}
|
|
// if df.rename("weight_(%)", "weight").is_ok() {}
|
|
// if df.rename("weight (%)", "weight").is_ok() {}
|
|
// if df.rename("CUSIP", "cusip").is_ok() {}
|
|
|
|
if df.get_column_names().contains(&"fund") {
|
|
_ = df.drop_in_place("fund");
|
|
}
|
|
if df.get_column_names().contains(&"weight_rank") {
|
|
_ = df.drop_in_place("weight_rank");
|
|
}
|
|
if df.get_column_names().contains(&"") {
|
|
let mut cols = df.get_column_names();
|
|
cols.retain(|&item| !item.is_empty());
|
|
df = df.select(cols)?;
|
|
}
|
|
|
|
if !df.fields().contains(&Field::new("date", DataType::Date)) {
|
|
let date_format =
|
|
|mut df: DataFrame, format: Option<String>| -> Result<DataFrame, Error> {
|
|
df = df
|
|
.lazy()
|
|
.with_column(col("date").str().strptime(
|
|
DataType::Date,
|
|
StrptimeOptions {
|
|
format,
|
|
strict: false,
|
|
..Default::default()
|
|
},
|
|
))
|
|
.collect()?;
|
|
|
|
if df.column("date").unwrap().null_count() > df.height() / 10 {
|
|
return Err(anyhow!("wrong date format"));
|
|
}
|
|
|
|
Ok(df)
|
|
};
|
|
|
|
if let Ok(x) = date_format(df.clone(), Some("%m/%d/%Y".into())) {
|
|
df = x
|
|
} else if let Ok(x) = date_format(df.clone(), Some("%Y/%m/%d".into())) {
|
|
df = x
|
|
} else if let Ok(x) = date_format(df.clone(), None) {
|
|
df = x
|
|
}
|
|
}
|
|
|
|
// format arkw, ARK BITCOIN ETF HOLDCO (ARKW) to ARKB
|
|
if let Ok(x) = df
|
|
.clone()
|
|
.lazy()
|
|
.with_columns(vec![
|
|
when(col("company").eq(lit("ARK BITCOIN ETF HOLDCO (ARKW)")))
|
|
.then(lit("ARKB"))
|
|
.otherwise(col("ticker"))
|
|
.alias("ticker"),
|
|
when(col("company").eq(lit("ARK BITCOIN ETF HOLDCO (ARKW)")))
|
|
.then(lit("ARKB"))
|
|
.otherwise(col("company"))
|
|
.alias("company"),
|
|
])
|
|
.with_columns(vec![
|
|
when(col("company").eq(lit("ARK BITCOIN ETF HOLDCO (ARKF)")))
|
|
.then(lit("ARKB"))
|
|
.otherwise(col("ticker"))
|
|
.alias("ticker"),
|
|
when(col("company").eq(lit("ARK BITCOIN ETF HOLDCO (ARKF)")))
|
|
.then(lit("ARKB"))
|
|
.otherwise(col("company"))
|
|
.alias("company"),
|
|
])
|
|
.collect()
|
|
{
|
|
df = x;
|
|
}
|
|
|
|
let mut expressions: Vec<Expr> = vec![];
|
|
|
|
if df.fields().contains(&Field::new("weight", DataType::Utf8)) {
|
|
expressions.push(
|
|
col("weight")
|
|
.str()
|
|
.replace(lit("%"), lit(""), true)
|
|
.cast(DataType::Float64),
|
|
);
|
|
}
|
|
|
|
if df
|
|
.fields()
|
|
.contains(&Field::new("market_value", DataType::Utf8))
|
|
{
|
|
expressions.push(
|
|
col("market_value")
|
|
.str()
|
|
.replace(lit("$"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(","), lit(""), true)
|
|
.cast(DataType::Float64)
|
|
.cast(DataType::Int64),
|
|
);
|
|
}
|
|
|
|
if df
|
|
.fields()
|
|
.contains(&Field::new("market_value", DataType::Float64))
|
|
{
|
|
expressions.push(col("market_value").cast(DataType::Int64));
|
|
}
|
|
|
|
if df.fields().contains(&Field::new("shares", DataType::Utf8)) {
|
|
expressions.push(
|
|
col("shares")
|
|
.str()
|
|
.replace_all(lit(","), lit(""), true)
|
|
.cast(DataType::Int64),
|
|
);
|
|
}
|
|
|
|
// rename values
|
|
expressions.push(
|
|
col("ticker")
|
|
.str()
|
|
.replace_all(lit(" FP"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(" UQ"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(" UF"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(" UN"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(" UW"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(" CN"), lit(""), true)
|
|
.str()
|
|
.replace(lit("DKNN"), lit("DKNG"), true)
|
|
.str()
|
|
.rstrip(None),
|
|
);
|
|
expressions.push(
|
|
col("company")
|
|
.str()
|
|
.replace_all(lit("-A"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("- A"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("CL A"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("CLASS A"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("Inc"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("INC"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("incorporated"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("LTD"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("CORP"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("CORPORATION"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("Corporation"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("- C"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("-"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(","), lit(""), true)
|
|
.str()
|
|
.replace_all(lit("."), lit(""), true)
|
|
.str()
|
|
.replace(lit("HLDGS"), lit(""), true)
|
|
.str()
|
|
.replace(lit("HOLDINGS"), lit(""), true)
|
|
.str()
|
|
.replace(lit("Holdings"), lit(""), true)
|
|
.str()
|
|
.replace(lit("ORATION"), lit(""), true)
|
|
.str()
|
|
.replace(lit("COINBASE GLOBAL"), lit("COINBASE"), true)
|
|
.str()
|
|
.replace(lit("Coinbase Global"), lit("Coinbase"), true)
|
|
.str()
|
|
.replace(lit("Blackdaemon"), lit("Blockdaemon"), true)
|
|
.str()
|
|
.replace(lit("DISCOVERY"), lit("Dassault Systemes"), true)
|
|
.str()
|
|
.replace(lit("Space Investment"), lit("SpaceX"), true)
|
|
.str()
|
|
.replace(lit("Space Exploration Technologies Corp"), lit("SpaceX"), true)
|
|
.str()
|
|
.replace(lit("Space Exploration Technologies Co"), lit("SpaceX"), true)
|
|
.str()
|
|
.rstrip(None),
|
|
);
|
|
|
|
// run expressions
|
|
df = df
|
|
.lazy()
|
|
.with_columns(expressions)
|
|
.filter(col("date").is_not_null())
|
|
.collect()?;
|
|
|
|
if !df.get_column_names().contains(&"share_price")
|
|
&& df.get_column_names().contains(&"market_value")
|
|
{
|
|
df = df
|
|
.lazy()
|
|
.with_column(
|
|
(col("market_value").cast(DataType::Float64)
|
|
/ col("shares").cast(DataType::Float64))
|
|
.alias("share_price")
|
|
.cast(DataType::Float64)
|
|
.round(2),
|
|
)
|
|
.collect()?
|
|
}
|
|
|
|
if df.get_column_names().contains(&"share_price") {
|
|
df = df.select([
|
|
"date",
|
|
"ticker",
|
|
"cusip",
|
|
"company",
|
|
"market_value",
|
|
"shares",
|
|
"share_price",
|
|
"weight",
|
|
])?;
|
|
} else if !df
|
|
.get_column_names()
|
|
.eq(&["date", "ticker", "cusip", "company", "weight"])
|
|
{
|
|
df = df.select(["date", "ticker", "cusip", "company", "weight"])?;
|
|
}
|
|
|
|
Ok(df.into())
|
|
}
|
|
|
|
pub fn get_api(
|
|
&self,
|
|
last_day: Option<NaiveDate>,
|
|
source: Option<&Source>,
|
|
) -> Result<DataFrame, Error> {
|
|
let url = match (&self.ticker, last_day) {
|
|
(self::Ticker::ARKVX, Some(last_day)) => format!(
|
|
"https://api.nexveridian.com/ark_holdings?ticker=ARKVX&start={}",
|
|
last_day
|
|
),
|
|
(tic, Some(last_day)) => match source {
|
|
Some(Source::ArkFundsIoIncremental) => format!(
|
|
"https://arkfunds.io/api/v2/etf/holdings?symbol={}&date_from={}",
|
|
tic, last_day
|
|
),
|
|
_ => format!(
|
|
"https://api.nexveridian.com/ark_holdings?ticker={}&start={}",
|
|
tic, last_day
|
|
),
|
|
},
|
|
(self::Ticker::ARKVX, None) => {
|
|
"https://api.nexveridian.com/ark_holdings?ticker=ARKVX".to_owned()
|
|
}
|
|
(tic, None) => match source {
|
|
Some(Source::ArkFundsIoFull) => {
|
|
format!("https://arkfunds.io/api/v2/etf/holdings?symbol={}", tic)
|
|
}
|
|
_ => {
|
|
format!("https://api.nexveridian.com/ark_holdings?ticker={}", tic)
|
|
}
|
|
},
|
|
};
|
|
|
|
let mut df = Reader::Json.get_data_url(url)?;
|
|
df = match source {
|
|
Some(Source::ArkFundsIoIncremental) | Some(Source::ArkFundsIoFull) => {
|
|
df = df
|
|
.column("holdings")?
|
|
.clone()
|
|
.explode()?
|
|
.struct_()?
|
|
.clone()
|
|
.unnest();
|
|
df
|
|
}
|
|
_ => df,
|
|
};
|
|
Ok(df)
|
|
}
|
|
|
|
pub fn get_csv_ark(&self) -> Result<DataFrame, Error> {
|
|
let url = match self.ticker {
|
|
self::Ticker::ARKVX => "https://ark-ventures.com/wp-content/uploads/funds-etf-csv/ARK_VENTURE_FUND_HOLDINGS.csv".to_owned(),
|
|
self::Ticker::ARKA | self::Ticker::ARKZ |
|
|
self::Ticker::ARKC | self::Ticker::ARKD | self::Ticker::ARKY => format!("https://cdn.21shares-funds.com/uploads/fund-documents/us-bank/holdings/product/current/{}-Export.csv", self.ticker.value()),
|
|
_ => format!("https://ark-funds.com/wp-content/uploads/funds-etf-csv/ARK_{}_ETF_{}_HOLDINGS.csv", self.ticker.value(), self.ticker),
|
|
};
|
|
Reader::Csv.get_data_url(url)
|
|
}
|
|
|
|
pub fn merge_old_csv_to_parquet(ticker: Ticker, path: Option<String>) -> Result<Self, Error> {
|
|
let mut dfs = vec![];
|
|
for x in glob(&format!("data/csv/{}/*", ticker))?.filter_map(Result::ok) {
|
|
dfs.push(LazyCsvReader::new(x).finish()?);
|
|
}
|
|
|
|
let mut df = concat(
|
|
dfs,
|
|
UnionArgs {
|
|
..Default::default()
|
|
},
|
|
)?
|
|
.into();
|
|
|
|
if Self::read_parquet(&ticker, path.as_ref()).is_ok() {
|
|
let df_old = Self::read_parquet(&ticker, path.as_ref())?;
|
|
df = Self::concat_df(vec![Self::df_format(df_old)?, Self::df_format(df)?])?;
|
|
df = Self::df_format(df)?;
|
|
}
|
|
Ok(Self { df, ticker, path })
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq)]
|
|
pub enum Reader {
|
|
Csv,
|
|
Json,
|
|
}
|
|
|
|
impl Reader {
|
|
pub fn get_data_url(&self, url: String) -> Result<DataFrame, Error> {
|
|
let response = Client::builder()
|
|
.user_agent("Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36")
|
|
.gzip(true)
|
|
.build()?
|
|
.get(url)
|
|
.send()?;
|
|
|
|
if !response.status().is_success() {
|
|
return Err(anyhow!(
|
|
"HTTP request failed with status code: {:?}",
|
|
response.status()
|
|
));
|
|
}
|
|
|
|
let data = response.text()?.into_bytes();
|
|
|
|
let df = match self {
|
|
Self::Csv => CsvReader::new(Cursor::new(data))
|
|
.has_header(true)
|
|
.finish()?,
|
|
Self::Json => {
|
|
let json_string = String::from_utf8(data)?;
|
|
let json: Value = serde_json::from_str(&json_string)?;
|
|
JsonReader::new(Cursor::new(json.to_string())).finish()?
|
|
}
|
|
};
|
|
|
|
Ok(df)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use serial_test::serial;
|
|
use std::fs;
|
|
|
|
#[test]
|
|
#[serial]
|
|
fn read_write_parquet() -> Result<(), Error> {
|
|
let test_df = df![
|
|
"date" => ["2023-01-01"],
|
|
"ticker" => ["TSLA"],
|
|
"cusip" => ["123abc"],
|
|
"company" => ["Tesla"],
|
|
"market_value" => [100],
|
|
"shares" => [10],
|
|
"share_price" => [10],
|
|
"weight" => [10.00]
|
|
]?;
|
|
|
|
Ark::write_df_parquet("data/test/ARKK.parquet".into(), test_df.clone().into())?;
|
|
let read = Ark::new(Source::Read, Ticker::ARKK, Some("data/test".to_owned()))?.collect()?;
|
|
fs::remove_file("data/test/ARKK.parquet")?;
|
|
|
|
assert_eq!(read, test_df);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
#[serial]
|
|
fn arkw_format_arkb() -> Result<(), Error> {
|
|
let test_df = df![
|
|
"date" => ["2024-01-01", "2024-01-02"],
|
|
"ticker" => [None::<&str>, Some("TSLA")],
|
|
"cusip" => ["123abc", "TESLA"],
|
|
"company" => ["ARK BITCOIN ETF HOLDCO (ARKW)", "TESLA"],
|
|
"market_value" => [100, 400],
|
|
"shares" => [10, 20],
|
|
"share_price" => [10, 20],
|
|
"weight" => [10.00, 20.00]
|
|
]?;
|
|
|
|
Ark::write_df_parquet("data/test/ARKW.parquet".into(), test_df.clone().into())?;
|
|
let read = Ark::new(Source::Read, Ticker::ARKW, Some("data/test".to_owned()))?.collect()?;
|
|
fs::remove_file("data/test/ARKW.parquet")?;
|
|
|
|
let df = Ark::df_format(read.into())?.collect()?;
|
|
assert_eq!(
|
|
df,
|
|
df![
|
|
"date" => ["2024-01-01", "2024-01-02"],
|
|
"ticker" => ["ARKB", "TSLA"],
|
|
"cusip" => ["123abc", "TESLA"],
|
|
"company" => ["ARKB", "TESLA"],
|
|
"market_value" => [100, 400],
|
|
"shares" => [10, 20],
|
|
"share_price" => [10, 20],
|
|
"weight" => [10.00, 20.00]
|
|
]?
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
#[serial]
|
|
fn arkf_format_arkb() -> Result<(), Error> {
|
|
let test_df = df![
|
|
"date" => ["2024-01-01", "2024-01-02"],
|
|
"ticker" => [None::<&str>, Some("TSLA")],
|
|
"cusip" => ["123abc", "TESLA"],
|
|
"company" => ["ARK BITCOIN ETF HOLDCO (ARKF)", "TESLA"],
|
|
"market_value" => [100, 400],
|
|
"shares" => [10, 20],
|
|
"share_price" => [10, 20],
|
|
"weight" => [10.00, 20.00]
|
|
]?;
|
|
|
|
Ark::write_df_parquet("data/test/ARKF.parquet".into(), test_df.clone().into())?;
|
|
let read = Ark::new(Source::Read, Ticker::ARKF, Some("data/test".to_owned()))?.collect()?;
|
|
fs::remove_file("data/test/ARKF.parquet")?;
|
|
|
|
let df = Ark::df_format(read.into())?.collect()?;
|
|
assert_eq!(
|
|
df,
|
|
df![
|
|
"date" => ["2024-01-01", "2024-01-02"],
|
|
"ticker" => ["ARKB", "TSLA"],
|
|
"cusip" => ["123abc", "TESLA"],
|
|
"company" => ["ARKB", "TESLA"],
|
|
"market_value" => [100, 400],
|
|
"shares" => [10, 20],
|
|
"share_price" => [10, 20],
|
|
"weight" => [10.00, 20.00]
|
|
]?
|
|
);
|
|
|
|
Ok(())
|
|
}
|
|
}
|