mirror of
https://github.com/NexVeridian/ark-invest-api-rust-data.git
synced 2025-09-02 09:59:12 +00:00
447 lines
14 KiB
Rust
447 lines
14 KiB
Rust
use chrono::NaiveDate;
|
|
use glob::glob;
|
|
use polars::datatypes::DataType;
|
|
use polars::prelude::*;
|
|
use polars::prelude::{DataFrame, StrptimeOptions, UniqueKeepStrategy};
|
|
use reqwest::blocking::Client;
|
|
use serde_json::Value;
|
|
use std::error::Error;
|
|
use std::fs::File;
|
|
use std::io::Cursor;
|
|
use std::result::Result;
|
|
use strum_macros::EnumIter;
|
|
|
|
#[derive(strum_macros::Display, EnumIter, Clone, Copy)]
|
|
pub enum Ticker {
|
|
ARKVC,
|
|
ARKF,
|
|
ARKG,
|
|
ARKK,
|
|
ARKQ,
|
|
ARKW,
|
|
ARKX,
|
|
}
|
|
impl Ticker {
|
|
pub fn value(&self) -> &str {
|
|
match *self {
|
|
Ticker::ARKVC => "ARKVC",
|
|
Ticker::ARKF => "FINTECH_INNOVATION",
|
|
Ticker::ARKG => "GENOMIC_REVOLUTION",
|
|
Ticker::ARKK => "INNOVATION",
|
|
Ticker::ARKQ => "AUTONOMOUS_TECH._&_ROBOTICS",
|
|
Ticker::ARKW => "NEXT_GENERATION_INTERNET",
|
|
Ticker::ARKX => "SPACE_EXPLORATION_&_INNOVATION",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub enum DF {
|
|
LazyFrame(LazyFrame),
|
|
DataFrame(DataFrame),
|
|
}
|
|
impl From<LazyFrame> for DF {
|
|
fn from(lf: LazyFrame) -> Self {
|
|
DF::LazyFrame(lf)
|
|
}
|
|
}
|
|
impl From<DataFrame> for DF {
|
|
fn from(df: DataFrame) -> Self {
|
|
DF::DataFrame(df)
|
|
}
|
|
}
|
|
impl DF {
|
|
pub fn collect(self) -> Result<DataFrame, Box<dyn Error>> {
|
|
match self {
|
|
DF::LazyFrame(x) => Ok(x.collect()?),
|
|
DF::DataFrame(x) => Ok(x),
|
|
}
|
|
}
|
|
pub fn lazy(self) -> LazyFrame {
|
|
match self {
|
|
DF::LazyFrame(x) => x,
|
|
DF::DataFrame(x) => x.lazy(),
|
|
}
|
|
}
|
|
}
|
|
trait DFS {
|
|
fn lazy(self) -> Vec<LazyFrame>;
|
|
fn collect(self) -> Vec<DataFrame>;
|
|
}
|
|
impl DFS for Vec<DF> {
|
|
fn lazy(self) -> Vec<LazyFrame> {
|
|
self.into_iter().map(|df| df.lazy()).collect()
|
|
}
|
|
fn collect(self) -> Vec<DataFrame> {
|
|
self.into_iter().map(|df| df.collect().unwrap()).collect()
|
|
}
|
|
}
|
|
|
|
pub enum Source {
|
|
Read,
|
|
Ark,
|
|
ApiIncremental,
|
|
ApiFull,
|
|
}
|
|
pub struct Ark {
|
|
pub df: DF,
|
|
ticker: Ticker,
|
|
path: Option<String>,
|
|
}
|
|
impl Ark {
|
|
pub fn new(
|
|
source: Source,
|
|
ticker: Ticker,
|
|
path: Option<String>,
|
|
) -> Result<Self, Box<dyn Error>> {
|
|
let existing_file = Self::read_parquet(ticker, path.clone()).is_ok();
|
|
|
|
let mut ark = Self {
|
|
df: match existing_file {
|
|
true => Self::read_parquet(ticker, path.clone())?,
|
|
false => DF::DataFrame(df!["date" => [""],]?),
|
|
},
|
|
ticker,
|
|
path,
|
|
};
|
|
|
|
let update = match (source, existing_file) {
|
|
(Source::Read, false) => {
|
|
panic!("Can not read from file, file is empty, does not exist, or is locked")
|
|
}
|
|
(Source::Read, true) => None,
|
|
(Source::Ark, _) => Some(ark.get_csv_ark()?),
|
|
(Source::ApiIncremental, true) => {
|
|
let last_day = ark
|
|
.df
|
|
.clone()
|
|
.collect()?
|
|
.column("date")
|
|
.unwrap()
|
|
.max()
|
|
.and_then(NaiveDate::from_num_days_from_ce_opt);
|
|
Some(ark.get_api(last_day)?)
|
|
}
|
|
(Source::ApiIncremental, false) | (Source::ApiFull, _) => Some(ark.get_api(None)?),
|
|
};
|
|
|
|
if let Some(update) = update {
|
|
if existing_file {
|
|
ark.df = Self::concat_df(vec![
|
|
Self::df_format(ark.df)?,
|
|
Self::df_format(update.into())?,
|
|
])?;
|
|
} else {
|
|
ark.df = Self::df_format(update.into())?;
|
|
}
|
|
}
|
|
|
|
Ok(ark)
|
|
}
|
|
|
|
pub fn collect(self) -> Result<DataFrame, Box<dyn Error>> {
|
|
self.df.collect()
|
|
}
|
|
|
|
pub fn write_parquet(self) -> Result<Self, Box<dyn Error>> {
|
|
// with format df
|
|
let ark = self.format()?;
|
|
Self::write_df_parquet(
|
|
match &ark.path {
|
|
Some(path) => format!("{}/{}.parquet", path, ark.ticker),
|
|
None => format!("data/parquet/{}.parquet", ark.ticker),
|
|
},
|
|
ark.df.clone(),
|
|
)?;
|
|
Ok(ark)
|
|
}
|
|
|
|
fn write_df_parquet(path: String, df: DF) -> Result<(), Box<dyn Error>> {
|
|
ParquetWriter::new(File::create(path)?).finish(&mut df.collect()?)?;
|
|
Ok(())
|
|
}
|
|
|
|
fn read_parquet(ticker: Ticker, path: Option<String>) -> Result<DF, Box<dyn Error>> {
|
|
let df = LazyFrame::scan_parquet(
|
|
match path {
|
|
Some(p) => format!("{}/{}.parquet", p, ticker),
|
|
None => format!("data/parquet/{}.parquet", ticker),
|
|
},
|
|
ScanArgsParquet::default(),
|
|
)?;
|
|
Ok(df.into())
|
|
}
|
|
|
|
pub fn sort(mut self) -> Result<Self, Box<dyn Error>> {
|
|
self.df = Self::df_sort(self.df.clone())?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn df_sort(df: DF) -> Result<DF, Box<dyn Error>> {
|
|
Ok(df
|
|
.collect()?
|
|
.sort(["date", "weight"], vec![false, true])?
|
|
.into())
|
|
}
|
|
|
|
fn concat_df(dfs: Vec<DF>) -> Result<DF, Box<dyn Error>> {
|
|
// with dedupe
|
|
let df = concat(dfs.lazy(), false, true)?;
|
|
Self::dedupe(df.into())
|
|
}
|
|
|
|
pub fn dedupe(mut df: DF) -> Result<DF, Box<dyn Error>> {
|
|
df = df
|
|
.lazy()
|
|
.unique_stable(None, UniqueKeepStrategy::First)
|
|
.into();
|
|
Ok(df)
|
|
}
|
|
|
|
pub fn format(mut self) -> Result<Self, Box<dyn Error>> {
|
|
self.df = Self::df_format(self.df.clone())?;
|
|
Ok(self)
|
|
}
|
|
|
|
pub fn df_format(df: DF) -> Result<DF, Box<dyn Error>> {
|
|
let mut df = df.collect()?;
|
|
|
|
if df.get_column_names().contains(&"market_value_($)") {
|
|
df = df
|
|
.lazy()
|
|
.rename(
|
|
vec!["market_value_($)", "weight_(%)"],
|
|
vec!["market_value", "weight"],
|
|
)
|
|
.collect()?;
|
|
}
|
|
if df.get_column_names().contains(&"market value ($)") {
|
|
df = df
|
|
.lazy()
|
|
.rename(
|
|
vec!["market value ($)", "weight (%)"],
|
|
vec!["market_value", "weight"],
|
|
)
|
|
.collect()?;
|
|
}
|
|
if df.get_column_names().contains(&"CUSIP") {
|
|
df = df
|
|
.lazy()
|
|
.rename(vec!["CUSIP", "weight (%)"], vec!["cusip", "weight"])
|
|
.collect()?;
|
|
}
|
|
|
|
// if df.rename("market_value_($)", "market_value").is_ok() {}
|
|
// if df.rename("market value ($)", "market_value").is_ok() {}
|
|
// if df.rename("weight_(%)", "weight").is_ok() {}
|
|
// if df.rename("weight (%)", "weight").is_ok() {}
|
|
// if df.rename("CUSIP", "cusip").is_ok() {}
|
|
|
|
if df.get_column_names().contains(&"fund") {
|
|
_ = df.drop_in_place("fund");
|
|
}
|
|
if df.get_column_names().contains(&"weight_rank") {
|
|
_ = df.drop_in_place("weight_rank");
|
|
}
|
|
|
|
let mut expressions: Vec<Expr> = vec![];
|
|
|
|
if !df.fields().contains(&Field::new("date", DataType::Date)) {
|
|
expressions.push(col("date").str().strptime(
|
|
DataType::Date,
|
|
StrptimeOptions {
|
|
format: Some("%m/%d/%Y".into()),
|
|
strict: false,
|
|
exact: true,
|
|
cache: true,
|
|
},
|
|
));
|
|
}
|
|
|
|
if df.fields().contains(&Field::new("weight", DataType::Utf8)) {
|
|
expressions.push(
|
|
col("weight")
|
|
.str()
|
|
.replace(lit("%"), lit(""), true)
|
|
.cast(DataType::Float64),
|
|
);
|
|
}
|
|
|
|
if df
|
|
.fields()
|
|
.contains(&Field::new("market_value", DataType::Utf8))
|
|
{
|
|
expressions.push(
|
|
col("market_value")
|
|
.str()
|
|
.replace(lit("$"), lit(""), true)
|
|
.str()
|
|
.replace_all(lit(","), lit(""), true)
|
|
.cast(DataType::Float64)
|
|
.cast(DataType::Int64),
|
|
);
|
|
}
|
|
|
|
if df.fields().contains(&Field::new("shares", DataType::Utf8)) {
|
|
expressions.push(
|
|
col("shares")
|
|
.str()
|
|
.replace_all(lit(","), lit(""), true)
|
|
.cast(DataType::Int64),
|
|
);
|
|
}
|
|
|
|
df = df
|
|
.lazy()
|
|
.with_columns(expressions)
|
|
.filter(col("date").is_not_null())
|
|
.collect()?;
|
|
|
|
if !df.get_column_names().contains(&"share_price")
|
|
&& df.get_column_names().contains(&"market_value")
|
|
{
|
|
df = df
|
|
.lazy()
|
|
.with_column(
|
|
(col("market_value").cast(DataType::Float64)
|
|
/ col("shares").cast(DataType::Float64))
|
|
.alias("share_price")
|
|
.cast(DataType::Float64)
|
|
.round(2),
|
|
)
|
|
.collect()?
|
|
}
|
|
|
|
if df.get_column_names().contains(&"share_price") {
|
|
df = df.select([
|
|
"date",
|
|
"ticker",
|
|
"cusip",
|
|
"company",
|
|
"market_value",
|
|
"shares",
|
|
"share_price",
|
|
"weight",
|
|
])?;
|
|
} else if !df
|
|
.get_column_names()
|
|
.eq(&["date", "ticker", "cusip", "company", "weight"])
|
|
{
|
|
df = df.select(["date", "ticker", "cusip", "company", "weight"])?;
|
|
}
|
|
|
|
Ok(df.into())
|
|
}
|
|
|
|
pub fn get_api(&self, last_day: Option<NaiveDate>) -> Result<LazyFrame, Box<dyn Error>> {
|
|
let url = match (self.ticker, last_day) {
|
|
(self::Ticker::ARKVC, Some(last_day)) => format!(
|
|
"https://api.nexveridian.com/arkvc_holdings?start={}",
|
|
last_day
|
|
),
|
|
(tic, Some(last_day)) => format!(
|
|
"https://api.nexveridian.com/ark_holdings?ticker={}&start={}",
|
|
tic, last_day
|
|
),
|
|
(self::Ticker::ARKVC, None) => "https://api.nexveridian.com/arkvc_holdings".to_owned(),
|
|
(tic, None) => {
|
|
format!("https://api.nexveridian.com/ark_holdings?ticker={}", tic)
|
|
}
|
|
};
|
|
Reader::Json.get_data_url(url)
|
|
}
|
|
|
|
pub fn get_csv_ark(&self) -> Result<LazyFrame, Box<dyn Error>> {
|
|
let url = match self.ticker {
|
|
self::Ticker::ARKVC => "https://ark-ventures.com/wp-content/uploads/funds-etf-csv/ARK_VENTURE_FUND_HOLDINGS.csv".to_owned(),
|
|
_ => format!("https://ark-funds.com/wp-content/uploads/funds-etf-csv/ARK_{}_ETF_{}_HOLDINGS.csv", self.ticker.value(), self.ticker),
|
|
};
|
|
Reader::Csv.get_data_url(url)
|
|
}
|
|
|
|
pub fn merge_old_csv_to_parquet(
|
|
ticker: Ticker,
|
|
path: Option<String>,
|
|
) -> Result<Self, Box<dyn Error>> {
|
|
let mut dfs = vec![];
|
|
for x in glob(&format!("data/csv/{}/*", ticker))?.filter_map(Result::ok) {
|
|
dfs.push(LazyCsvReader::new(x).finish()?);
|
|
}
|
|
let mut df = concat(dfs, false, true)?.into();
|
|
|
|
if Self::read_parquet(ticker, path.clone()).is_ok() {
|
|
let df_old = Self::read_parquet(ticker, path.clone())?;
|
|
df = Self::concat_df(vec![Self::df_format(df_old)?, Self::df_format(df)?])?
|
|
}
|
|
|
|
Ok(Self { df, ticker, path })
|
|
}
|
|
}
|
|
|
|
pub enum Reader {
|
|
Csv,
|
|
Json,
|
|
}
|
|
|
|
impl Reader {
|
|
pub fn get_data_url(&self, url: String) -> Result<LazyFrame, Box<dyn Error>> {
|
|
let response = Client::builder()
|
|
.user_agent("Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3")
|
|
.build()?.get(url).send()?;
|
|
|
|
if !response.status().is_success() {
|
|
return Err(format!(
|
|
"HTTP request failed with status code: {:?}",
|
|
response.status()
|
|
)
|
|
.into());
|
|
}
|
|
|
|
let data = response.text()?.into_bytes();
|
|
|
|
let df: LazyFrame = match self {
|
|
Self::Csv => CsvReader::new(Cursor::new(data))
|
|
.has_header(true)
|
|
.finish()?
|
|
.lazy(),
|
|
Self::Json => {
|
|
let json_string = String::from_utf8(data)?;
|
|
let json: Value = serde_json::from_str(&json_string)?;
|
|
JsonReader::new(Cursor::new(json.to_string()))
|
|
.finish()?
|
|
.lazy()
|
|
}
|
|
};
|
|
|
|
Ok(df)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use serial_test::serial;
|
|
use std::fs;
|
|
|
|
#[test]
|
|
#[serial]
|
|
fn read_write_parquet() -> Result<(), Box<dyn Error>> {
|
|
let test_df = df![
|
|
"date" => ["2023-01-01"],
|
|
"ticker" => ["TSLA"],
|
|
"cusip" => ["123abc"],
|
|
"company" => ["Tesla"],
|
|
"market_value" => [100],
|
|
"shares" => [10],
|
|
"share_price" => [10],
|
|
"weight" => [10.00]
|
|
]?;
|
|
|
|
Ark::write_df_parquet("data/test/ARKK.parquet".into(), test_df.clone().into())?;
|
|
let read = Ark::new(Source::Read, Ticker::ARKK, Some("data/test".to_owned()))?.collect()?;
|
|
fs::remove_file("data/test/ARKK.parquet")?;
|
|
|
|
assert_eq!(read, test_df);
|
|
Ok(())
|
|
}
|
|
}
|